Question on: JAMB Mathematics - 2011

T varies inversely as the cube of R. When R = 3, T = (\frac{2}{81}), find T when R = 2

A
\(\frac{1}{18}\)
B
\(\frac{1}{12}\)
C
\(\frac{1}{24}\)
D
\(\frac{1}{6}\)
Ask EduPadi AI for a detailed answer
Correct Option: B

T (\alpha \frac{1}{R^3})

T = (\frac{k}{R^3})

k = TR3

= (\frac{2}{81}) x 33

= (\frac{2}{81}) x 27

dividing 81 by 27

k = (\frac{2}{2})

therefore, T = (\frac{2}{3}) x (\frac{1}{R^3})

When R = 2

T = (\frac{2}{3}) x (\frac{1}{2^3}) = (\frac{2}{3}) x (\frac{1}{8})

= (\frac{1}{12})

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses