Question on: SS2 Mathematics - Simultaneous Linear and Quadratic Equations

Solve the equation \(x^{2} + 5x + 4 = 0\) using the completing the square method 

View related lesson
A

x = 2 or 1

B

x = 1 or -4

C

x = -4 or -1

D

x = 2 or -2

Ask EduPadi AI for a detailed answer
Correct Option: C

\[x^{2} + 5x + 4 = 0\]

\[x^{2} + 5x = - 4\]

\[x^{2} + 5x + \left( \frac{5}{2} \right)^{2} = \left( \frac{5}{2} \right)^{2} - 4\]

\[x^{2} + 5x + \frac{25}{4} = \frac{25}{4} - 4\]

\[{(x + \frac{5}{2})}^{2} = \frac{9}{4}\]

\[x + \frac{5}{2} = \pm \sqrt{\frac{9}{4}} = \pm \frac{3}{2}\]

\[x + \frac{5}{2} = \pm \frac{3}{2}\]

\[x = \frac{3}{2} - \frac{5}{2}\ or - \frac{3}{2} - \frac{5}{2}\]

\[x = \frac{3 - 5}{2}\ or\frac{- 3 - 5}{2}\]

\[x = \frac{- 2}{2}\ or\frac{- 8}{2}\]

\(x = - 1\ or - 4\)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses