Question on: SS3 Mathematics - Matrices and Determinants
If \(A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 11 & 5 \\ 4 & - 6 \\ \end{bmatrix}\), find \(A^{T}\)
View related lesson
A
\(\begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 11 & 5 \\ 4 & - 6 \\ \end{bmatrix}\)
B
\(\begin{bmatrix} 0 & 2 & 5 & - 6 \\ 1 & 2 & 11 & 4 \\ \end{bmatrix}\)
C
\(\begin{bmatrix} 1 & 11 \\ 2 & - 6 \\ \end{bmatrix}\)
D
\(\begin{bmatrix} 2 & 2 \\ 11 & 5 \\ \end{bmatrix}\)
Ask EduPadi AI for a detailed answer
Correct Option: B
If \(A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 11 & 5 \\ 4 & - 6 \\ \end{bmatrix}\)
\(A^{T} = \begin{bmatrix} 0 & 2 & 5 & - 6 \\ 1 & 2 & 11 & 4 \\ \end{bmatrix}\)
Add your answer
Please share this, thanks!
No responses