Question on: SS3 Mathematics - Matrices and Determinants

If \(A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 11 & 5 \\ 4 & - 6 \\ \end{bmatrix}\), find \(A^{T}\)

View related lesson
A

\(\begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 11 & 5 \\ 4 & - 6 \\ \end{bmatrix}\)

B

\(\begin{bmatrix} 0 & 2 & 5 & - 6 \\ 1 & 2 & 11 & 4 \\ \end{bmatrix}\)

C

\(\begin{bmatrix} 1 & 11 \\ 2 & - 6 \\ \end{bmatrix}\)

D

\(\begin{bmatrix} 2 & 2 \\ 11 & 5 \\ \end{bmatrix}\)

Ask EduPadi AI for a detailed answer
Correct Option: B

If \(A = \begin{bmatrix} 1 & 0 \\ 2 & 2 \\ 11 & 5 \\ 4 & - 6 \\ \end{bmatrix}\)

\(A^{T} = \begin{bmatrix} 0 & 2 & 5 & - 6 \\ 1 & 2 & 11 & 4 \\ \end{bmatrix}\)

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses