Question on: JAMB Mathematics - 2024

If \(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\), find the value of x.

A

x = -4

B

x = 2

C

x = -2

D

x = 4

Ask EduPadi AI for a detailed answer
Correct Option: A

We are given the equation: \(25^{1 - x} \times 5^{x + 2} \div (\frac{1}{125})^{x} = 625^{-1}\). Start by expressing all numbers in terms of base 5:

  • \(25 = 5^2\), so \(25^{1 - x} = 5^{2(1 - x)} = 5^{2 - 2x}\)
  • \(125 = 5^3\), so \((1/125)^x = (5^{-3})^x = 5^{-3x}\)
  • \(625 = 5^4\), so \(625^{-1} = 5^{-4}\)

Now, the equation becomes: \(5^{2 - 2x} \times 5^{x + 2} \div 5^{-3x} = 5^{-4}\).

Combine the exponents: \(5^{2 - 2x + x + 2 + 3x} = 5^{4 + 2x}\)

Set the exponents equal: 4 + 2x = -4, hence 2x = -8 and x = -4.

Add your answer

Notice: Please post responsibly.

Please share this, thanks!

No responses