Question on: JAMB Mathematics - 2017
Find ∫(x2 + 3x − 5)dx
A
\(\frac{x_3}{3}\) - \(\frac{3x_2}{2}\) - 5x + k
B
\(\frac{x_3}{3}\) - \(\frac{3x_2}{2}\) + 5x + k
C
\(\frac{x_3}{3}\) + \(\frac{3x_2}{2}\) - 5x + k
D
\(\frac{x_3}{3}\) + \(\frac{3x_2}{2}\) + 5x + k
Ask EduPadi AI for a detailed answer
Correct Option: C
∫xndx = \(\frac{x_{n + 1}}{n + 1}\)
∫dx = x + k
where k is constant
∫(x2 + 3x − 5)dx
∫x2 dx + ∫3xdx − ∫5dx
\(\frac{2_{2 + 1}}{2 + 1}\) + \(\frac{3x^{1 + 1}}{1 + 1}\) − 5x + k
\(\frac{x_3}{3}\) + \(\frac{3x_2}{2}\) − 5x + k
∫dx = x + k
where k is constant
∫(x2 + 3x − 5)dx
∫x2 dx + ∫3xdx − ∫5dx
\(\frac{2_{2 + 1}}{2 + 1}\) + \(\frac{3x^{1 + 1}}{1 + 1}\) − 5x + k
\(\frac{x_3}{3}\) + \(\frac{3x_2}{2}\) − 5x + k
Add your answer
Please share this, thanks!
No responses